22 research outputs found

    Robustness of optimal channel reservation using handover prediction in multiservice wireless networks

    Full text link
    The aim of our study is to obtain theoretical limits for the gain that can be expected when using handover prediction and to determine the sensitivity of the system performance against different parameters. We apply an average-reward reinforcement learning approach based on afterstates to the design of optimal admission control policies in mobile multimedia cellular networks where predictive information related to the occurrence of future handovers is available. We consider a type of predictor that labels active mobile terminals in the cell neighborhood a fixed amount of time before handovers are predicted to occur, which we call the anticipation time. The admission controller exploits this information to reserve resources efficiently. We show that there exists an optimum value for the anticipation time at which the highest performance gain is obtained. Although the optimum anticipation time depends on system parameters, we find that its value changes very little when the system parameters vary within a reasonable range. We also find that, in terms of system performance, deploying prediction is always advantageous when compared to a system without prediction, even when the system parameters are estimated with poor precision. © Springer Science+Business Media, LLC 2012.The authors would like to thank the reviewers for their valuable comments that helped to improve the quality of the paper. This work has been supported by the Spanish Ministry of Education and Science and European Comission (30% PGE, 70% FEDER) under projects TIN2008-06739-C04-02 and TIN2010-21378-C02-02 and by Comunidad de Madrid through project S-2009/TIC-1468.Martínez Bauset, J.; Giménez Guzmán, JM.; Pla, V. (2012). Robustness of optimal channel reservation using handover prediction in multiservice wireless networks. Wireless Networks. 18(6):621-633. https://doi.org/10.1007/s11276-012-0423-6S621633186Ji, S., Chen, W., Ding, X., Chen, Y., Zhao, C., & Hu, C. (2010). Potential benefits of GPS/GLONASS/GALILEO integration in an urban canyon–Hong Kong. Journal of Navigation, 63(4), 681–693.Soh, W., & Kim, H. (2006). A predictive bandwidth reservation scheme using mobile positioning and road topology information. IEEE/ACM Transactions on Networking, 14(5), 1078–1091.Kwon, H., Yang, M., Park, A., & Venkatesan, S. (2008). Handover prediction strategy for 3G-WLAN overlay networks. In Proceedings: IEEE network operations and management symposium (NOMS) (pp. 819–822).Huang, C., Shen, H., & Chuang, Y. (2010). An adaptive bandwidth reservation scheme for 4G cellular networks using flexible 2-tier cell structure. Expert Systems with Applications, 37(9), 6414–6420.Wanalertlak, W., Lee, B., Yu, C., Kim, M., Park, S., & Kim, W. (2011). Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. Wireless Networks, 17(3), 645–658.Becvar, Z., Mach, P., & Simak, B. (2011). Improvement of handover prediction in mobile WiMAX by using two thresholds. Computer Networks, 55, 3759–3773.Sgora, A., & Vergados, D. (2009). Handoff prioritization and decision schemes in wireless cellular networks: a survey. IEEE Communications Surveys and Tutorials, 11(4), 57–77.Choi, S., & Shin, K. G. (2002). Adaptive bandwidth reservation and admission control in QoS-sensitive cellular networks. IEEE Transactions on Parallel and Distributed Systems, 13(9), 882–897.Ye, Z., Law, L., Krishnamurthy, S., Xu, Z., Dhirakaosal, S., Tripathi, S., & Molle, M. (2007). Predictive channel reservation for handoff prioritization in wireless cellular networks. Computer Networks, 51(3), 798–822.Abdulova, V., & Aybay, I. (2011). Predictive mobile-oriented channel reservation schemes in wireless cellular networks. Wireless Networks, 17(1), 149–166.Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41.Bartolini, N. (2001). Handoff and optimal channel assignment in wireless networks. Mobile Networks and Applications, 6(6), 511–524.Bartolini, N., & Chlamtac, I. (2002). Call admission control in wireless multimedia networks. In Proceedings: Personal, indoor and mobile radio communications (PIMRC) (pp. 285–289).Pla, V., & Casares-Giner, V. (2003). Optimal admission control policies in multiservice cellular networks. In Proceedings of the international network optimization conference (INOC) (pp. 466–471).Chu, K., Hung, L., & Lin, F. (2009). Adaptive channel reservation for call admission control to support prioritized soft handoff calls in a cellular CDMA system. Annals of Telecommunications, 64(11), 777–791.El-Alfy, E., & Yao, Y. (2011). Comparing a class of dynamic model-based reinforcement learning schemes for handoff prioritization in mobile communication networks. Expert Systems With Applications, 38(7), 8730–8737.Gimenez-Guzman, J. M., Martinez-Bauset, J., & Pla, V. (2007). A reinforcement learning approach for admission control in mobile multimedia networks with predictive information. IEICE Transactions on Communications , E-90B(7), 1663–1673.Sutton R., Barto A. G. (1998) Reinforcement learning: An introduction. The MIT press, Cambridge, MassachusettsBusoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2010). Reinforcement learning and dynamic programming using function approximators. Boca Raton, FL: CRC Press.Watkins, C., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.Brown, T. (2001). Switch packet arbitration via queue-learning. Advances in Neural Information Processing Systems, 14, 1337–1344.Proper, S., & Tadepalli, P. (2006). Scaling model-based average-reward reinforcement learning for product delivery. In Proceedings 17th European conference on machine learning (pp. 735–742).Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and Gaussian processes for relational reinforcement learning. Machine Learning, 64(1), 91–119.Banerjee, B., & Stone, P. (2007). General game learning using knowledge transfer. In Proceedings 20th international joint conference on artificial intelligence (pp. 672–677).Martinez-Bauset, J., Pla, V., Garcia-Roger, D., Domenech-Benlloch, M. J., & Gimenez-Guzman, J. M. (2008). Designing admission control policies to minimize blocking/forced-termination. In G. Ming, Y. Pan & P. Fan (Eds.), Advances in wireless networks: Performance modelling, analysis and enhancement (pp. 359–390). New York: Nova Science Pub Inc.Biswas, S., & Sengupta, B. (1997). Call admissibility for multirate traffic in wireless ATM networks. In Proceedings IEEE INFOCOM (2, pp. 649–657).Evans, J. S., & Everitt, D. (1999). Effective bandwidth-based admission control for multiservice CDMA cellular networks. IEEE Transactions on Vehicular Technology, 48(1), 36–46.Gilhousen, K., Jacobs, I., Padovani, R., Viterbi, A., Weaver, L. A. J., & Wheatley, C. E., III. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.Hegde, N., & Altman, E. (2006). Capacity of multiservice WCDMA networks with variable GoS. Wireless Networks, 12, 241–253.Ben-Shimol, Y., Kitroser, I., & Dinitz, Y. (2006). Two-dimensional mapping for wireless OFDMA systems. IEEE Transactions on Broadcasting, 52(3), 388–396.Gao, D., Cai, J., & Ngan, K. N. (2005). Admission control in IEEE 802.11e wireless LANs. IEEE Network, 19(4), 6–13.Liu, T., Bahl, P., & Chlamtac, I. (1998). Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16(6), 922–936.Hu, F., & Sharma, N. (2004). Priority-determined multiclass handoff scheme with guaranteed mobile qos in wireless multimedia networks. IEEE Transactions on Vehicular Technology, 53(1), 118–135.Chan, J., & Seneviratne, A. (1999). A practical user mobility prediction algorithm for supporting adaptive QoS in wireless networks. In Proceedings IEEE international conference on networks (ICON) (pp. 104–111).Jayasuriya, A., & Asenstorfer, J. (2002). Mobility prediction model for cellular networks based on the observed traffic patterns. In Proceedings of IASTED international conference on wireless and optical communication (WOC) (pp. 386–391).Diederich, J., & Zitterbart, M. (2005). A simple and scalable handoff prioritization scheme. Computer Communications, 28(7), 773–789.Rashad, S., Kantardzic, M., & Kumar, A. (2006). User mobility oriented predictive call admission control and resource reservation for next-generation mobile networks. Journal of Parallel and Distributed Computing, 66(7), 971–988.Soh, W. -S., & Kim, H. (2003). QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine, 41(1), 86 – 92.Lott, M., Siebert, M., Bonjour, S., vonHugo, D., & Weckerle, M. (2004). Interworking of WLAN and 3G systems. Proceedings IEE Communications, 151(5), 507 – 513.Sanabani, M., Shamala, S., Othman, M., & Zukarnain, Z. (2007). An enhanced bandwidth reservation scheme based on road topology information for QoS sensitive multimedia wireless cellular networks. In Proceedings of the 2007 international conference on computational science and its applications—Part II (ICCSA) (pp. 261–274).Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empirical results. Machine Learning, 22(1–3), 159–196.Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.Das, T. K., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-markov decision problems using average reward reinforcement learning. Management Science, 45(4), 560–574.Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. In Proceedings of the IEEE-SP workshop on neural networks for signal processing II. (pp. 3–12)

    Energy and throughput efficiency in wireless multihop networks

    No full text

    On per-flow fairness and scheduling in wireless multihop networks

    No full text

    Efficient fair TDMA scheduling in wireless multi-hop networks

    No full text

    Jitter analysis of the IEEE 802.11 DCF aceess mode

    No full text

    Joint per-flow scheduling and routing in wireless multihop networks

    No full text

    Quality-driven optimal SLA selection for enterprise cloud communications

    No full text

    Enhancing fairness in wireless multi-hop networks

    No full text

    Fair TDMA scheduling in wireless multihop networks

    No full text
    In wireless multihop networks, communication between two end-nodes is carried out by hopping over multiple wireless links. However, the fact that each node has to transmit not only its own traffic, but also traffic on behalf of other nodes, leads to unfairness among the communication rates of the nodes. Traditional Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) based media access control does not work satisfactory in a multihop scenario, since an intended target of a communication may be subject to mutual interference imposed by concurrent transmissions from nodes, which cannot directly sense each other, thus causing unfair throughput allocation. Although Time Division Multiple Access (TDMA) seems to be a more promising solution, careful transmission scheduling is needed in order to achieve error-free communication and fairness. Several algorithms may be found in the literature for scheduling TDMA transmissions in wireless multihop networks. Their main goal is to determine the optimal scheduling, in order to increase the capacity and reduce the delay for a given network topology, though they do not consider the traffic requirements of the active flows of the multihop network or fairness issues. In this paper, we propose a joint TDMA scheduling/load balancing algorithm, called Load-Balanced-Fair Flow Vector Scheduling Algorithm (LB-FFVSA). This algorithm schedules the transmissions in a fair manner, in terms of throughput per connection, taking into account the communication requirements of the active flows of the network. Simulation results show that the proposed algorithm achieves improved performance compared to other solutions, not only in terms of fairness, but also in terms of throughput. Moreover, it was proved that when a load balancing technique is used, the performance of the scheduling algorithm is further improved
    corecore